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Elastic hysteresis in solids is a complex matter which may affect a wide range of applications. As observed
in rocks, it is the result of the interplay between nonlinear and nonequilibrium phenomena, such as condition-
ing, relaxation, and memory. Here we will propose a theoretical nondeterministic framework in which non-
equilibrium effects are a natural consequence of the model. Experimental results will be shown to demonstrate
that the separation of such effects is fundamental to extract truthful information on nonlinearity.
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I. INTRODUCTION

Researchers in diverse fields1–4—such as materials
science,5 granular media,6 structural and biomaterials
engineering,7 nondestructive evaluation,8 and medical
imaging9—have a strong interest in understanding the non-
linear mechanisms involved in the elastic response of solids
to a dynamic excitation. However, the study of nonlinear
phenomena �e.g., resonance frequency shift, harmonics gen-
eration, etc.� in materials as different as rocks,10 granular
media,11 concrete,12,13 composites,14 ceramics,15 bones, and
other biological media,9 is made extremely complex by the
presence of nonequilibrium effects �i.e., conditioning,
memory, and relaxation�.

While features of the nonlinear elastic response of several
materials are commonly recognized,16 the distinction �and
link� between nonlinearity and nonequilibrium17 and the evi-
dence of the rate dependence of hysteresis in quasistatic
experiments18 have revealed the issue to be even more com-
plex. The most astonishing observation is that a dynamic
excitation, low enough to avoid damage, causes a reduction
in the elastic modulus �softening�13,19,20 with a change in the
elastic state of the material to a new, amplitude-dependent,
equilibrium state �conditioning�.17,21 When the excitation is
removed, memory of that elastic state is preserved, i.e., the
elastic modulus does not return instantaneously to the initial
value. In a long time, relaxation to the original elastic state
occurs.13

The described interplay between nonlinearity �i.e., the de-
pendence of a defined measurable quantity on the amplitude
of the excitation� and nonequilibrium �i.e., the variation in
the material parameters when the sample is excited at con-
stant amplitude� is not captured by existing phenomenologi-
cal models22–27 which have been developed to describe elas-
tic hysteresis in solids using a Preisach-Mayergoyz �PM�
space approach.28,29 Therefore, we propose �see Sec. II� a
nondeterministic PM space model in which rate-dependent
mechanisms are introduced to describe the phenomenology
described in Refs. 13, 17, and 19.

The proposed model motivated us to design experiments
in which effects due to nonlinearity and nonequilibrium can
be separated. Therefore, a specific experimental analysis was
implemented and predictions of the proposed model were
verified on concrete samples �see Sec. III�. The agreement

between model predictions and experimental results is dis-
cussed as a validation of the approach proposed. Finally, the
implications of our findings in the field of nonlinear elasticity
are discussed in Sec. IV.

II. A MULTILEVEL MODEL

Elastic hysteresis in nonlinear media originates at the in-
terface between linear homogeneous portions, separated by
mesoscopic “interstitial” regions.30,31 As shown in previous
works, a suitable phenomenological modeling framework
can be found in the PM space approach28,29 in which the
complex hysteretic behavior of such regions stems from the
collective behavior of a large number of simple microscopic
hysteretic elements �HEs�. Within such framework, we intro-
duce a stochastic PM space approach which allows the pres-
ence of nonequilibrium elastic states.

A. Model

In the model, the sample is discretized in a large number
of cells �i=1, . . . ,N� arranged in series, each representing a
mesoscopic element. Each cell is further divided into an en-
semble of microscopic elements �HEs�, which can reside in
one of two different states. Constitutive equations of the me-
soscopic cells are derived from simple equations of state de-
fined for the HEs and discrete equations of motion describe
the perturbations induced by a propagating elastic wave.

1. Constitutive equations for the microscopic elements

Each HE is described by the equation of state of a damped
sticky spring, i.e., a spring �with elastic constant K� in par-
allel with a clapping element �see Fig. 1�a��. It follows that
the jth HE belonging to the ith cell can reside in one of the
two following states �see Fig. 1�b��, depending on the stress
level and on the load history:

�1� An elastic state �the HE behaves as a spring�, where
the stress ��ij� is proportional to the strain ��ij�,

�ij = K�ij = K
�lij − ��

�
. �1�

For simplicity, we assume that all HEs have the same rest
length � and elastic constant K. The generalization to springs
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with different properties is straigthforward but more complex
in notation. Here lij is the actual length of the spring.

�2� A rigid state �the HE behaves as a closed piston�,
where, independently from the stress, the strain becomes
�ij =�c /K. Here �c is the so-called closing pressure of the
considered HE, defined below. The actual length of rigid
HEs is

lij = ��1 +
�c

K
� . �2�

HEs continuously switch from one state to the other �see
Fig. 1�b��. When the HE is in the elastic state, the stress is
supported by the spring of the element. When the stress be-
comes larger than the closing pressure �c, the two surfaces of
the piston get in contact and the system becomes rigid. Dur-
ing the unloading process, when the stress supported by the
piston falls below an opening pressure �o, the HEs may re-
turn to the elastic state with a given probability. The state of
each of the HEs can be easily traced in time since the time
evolution equations allow to define, at any time t, the spatial
distribution of stresses within the sample.

The approach proposed here is that, rather than being de-
terministic as in existing models, the opening process occurs,
for ���o, with a probability po. We assume po to be depen-
dent on the difference between the closing and opening pres-
sures �=�c−�o. In fact, ��0 can be ascribed to some form
of sticky mechanism between the surfaces forming the pis-
ton: the larger � is, the harder it is to break the “adhesion”
and the lower is po. In principle, any function of � could be
chosen to define po. Here, we use a Gompertz-type function,

po = exp�− exp��� − pmax�/��� , �3�

where � is a constant and pmax is the maximum stress applied
to the cell to which the HE belong.

On the contrary, transitions from the elastic to the rigid
state occur when the two surfaces get in contact. Having
such mechanism a different origin from sticky adhesion, the
elastic to rigid transitions occur deterministically. The effects
of introducing stochasticity in such transition can be studied
as well but this is beyond the scope of the present contribu-
tion.

Finally, random transitions with probability pr are also
considered for pressures �o	�	�c, where the two states
are both possible �see Fig. 1�b��. Such transitions account for
stress fluctuations �e.g., due to thermal fluctuations�, which
can lead the stress to increase/decrease up to eventually
reaching the closing/opening pressure. Since the transition to
the elastic state is further governed by a probability po, it
follows that the actual probability for a spontaneous
rigid—elastic transition is popr, negligible if compared to the
probability pr. Of course, a dependence of pr on the differ-
ence between the actual stress � and �o ��c� could be ex-
pected but it is not implemented here. Indeed, in the present
context, pr does not have a significant role since it is mostly
involved in the recovery effects, which are not analyzed
here.

It is to be noted that for a relaxed specimen, the initial
conditions, i.e., the states of the HEs at time 0, are deter-
mined by the described relaxation mechanisms. Indeed, the
sample has been kept at stress equal to zero for a long time,
therefore equilibrium has been reached. It follows that all
HEs with �o
0 have had time to relax to the elastic state.
Likewise, elements with �c	0 are in the rigid state. The
remaining elements are subject to relaxation, hence they are
distributed according to the relaxation probabilities. In par-
ticular, they are all in the rigid state, except for a portion
given by the relative probability of a spontaneous transition
from rigid to elastic: prpo / �pr+ prpo�. This number is small
since po is small.

2. Behavior of a mesoscopic cell

Every mesoscopic cell i is built out of a series of micro-
scopic HEs, some of which are elastic �springs� while the
others are rigid. We recall that the length li of the cell is
given by the sum of the lengths of its constituent elements,

li = 	
j

lij = 	
elastic

lij + 	
rigid

lij . �4�

Assuming the stress to be in equilibrium within each meso-
scopic cell, the stress �i over the ith cell is equal to the
stresses �ij over each HE. Using Eq. �1�, we have

	
elastic

�ij = 	
elastic

�K

�
lij − K� =

K

�
	

elastic

lij − Ni
elK , �5�

�i =
1

Ni
el 	

elastic

�ij , �6�

where Ni
el is the number of HEs in the elastic state at that

pressure level. Combining Eqs. �5� and �6�, we obtain

�i =
1

Ni
el

K

�
	

j

lij − K −
1

Ni
el

K

�
	
rigid

lij

=
K

Ni
el

	
j

lij − Ni
el� − 	

rigid

lij

�

=
K

Ni
el

li − M� − 	
rigid

�lij − ��

�
. �7�

FIG. 1. �Color online� Schematic representation �a� of the sticky
spring and �b� of its state vs pressure protocol. Arrows �red� denote
potential transitions from one state to the other with related
probabilities.
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M is the number of HEs belonging to the cell. From Eq. �7�,
we can deduce that the equivalent elastic modulus Ei of the
cell is stress dependent and, at a given pressure �, it can be
calculated as

1/Ei��� = Ni
el���/K . �8�

Finally, the stress of the cell can be obtained by knowing
at each time the number of HEs in the elastic state and the
total deformation of the rigid elements,

�i
c = 	

rigid

�lij − �� . �9�

We recall that the spring length is given by
li=	 jlij =ui+1−ui+�. Here ui and ui+1 denote the displace-
ments of the left and right tips of the cell while � is the cell
length, i.e., the distance between the tips at time 0. Note that
�=M�.

3. Macroscopic behavior of the sample

From the macroscopic point of view, the sample corre-
sponds to a set of springs in series, each with a stress-strain
constitutive equation given by Eq. �7�. The equations of mo-
tion describing the tips of the springs are therefore the clas-
sical equations,

�üi =
��

�x
=

�i − �i−1

�
, �10�

where � is the material density and a double dot denotes a
second-order time derivative. Substituting Eq. �7� into Eq.
�10�, we obtain an equation which involves only the dis-
placements,

�üi =
K

�

ui+1 − ui + �i

c

Ni
el −

ui − ui−1 + �i−1
c

Ni−1
el � . �11�

Equation �11� can be solved numerically using a finite-
difference forward scheme for the temporal derivatives. Of
course, at each time step, the number of HEs in the elastic
state �Ni

el� and the total length of HEs in the rigid state ��i
c�

must be calculated.

B. Model predictions

Let us consider a stress protocol ��t� and analyze the
evolution of the number of elastic elements in a given me-
soscopic cell. The behavior of the system is governed by
Ni

el��� �see Eq. �7��; the HEs belonging to the cell are points
in the PM space ��c ,�o� since their closing and opening
pressures can be considered as coordinates. They are distrib-
uted in a triangle ��c
�o�. The behavior of the mesoscopic
cell is determined by the value of � with respect to �o and �c
�see Fig. 1�b��. In the initial state, elements with �o
0 and a
very small portion of those with �o	0 are in the elastic state
�see upper-left plot of Fig. 2�a��. Black �white� areas denote
HEs in the rigid �elastic� state. When the stress increases
�loading�, transitions to the rigid state take place for HEs
with �c	� �upper row of Fig. 2�a��. When stress decreases
�unloading, first two plots of the second row in Fig. 2�a��, �

must be compared with �o. All HEs above the horizontal
line, i.e., with �o
�, if rigid, become elastic with probabil-
ity po. The regions depicted in gray and/or dotted, for a given
value of �, are therefore populated by a mix of elastic and
rigid HEs.

As a consequence, when the stress varies in a given range,
different areas of the PM space behave in different ways, as
depicted in Fig. 2�b�. Most of the HEs are not affected by the
perturbation, namely, those in the white and black areas. El-
ements located in the gray triangle follow the perturbation,
switching rapidly between the elastic and rigid states �po is
large being �o close to �c�, thus describing fast dynamic
effects. Elements in the dotted rectangle do not follow the
perturbation and can only be switched from the rigid to the
elastic state. When the excitation amplitude is �1, the elastic
modulus of the sample at pressure � is approximately given
by

1/E = �N1 + N2 + N3�/K ,

N1 = �
�1



d�c�
0

�c

d�o���c,�o� ,

N2  �
�

�1

d�c�
�

�c

d�o���c,�o� ,

N3  �
�1



d�c�
−�1

0

d�o���c,�o�f�t� , �12�

where f�t� is a function which increases with the duration t
of the perturbation. The exact calculation of f�t� is beyond
the scope of this contribution. Only N2 depends on the value
of the actual stress while N3 depends on the amplitude and
duration of the excitation. Although both N2 and N3 contrib-
ute to the change in the elastic modulus, only N2 has the

FIG. 2. �Color online� �a� PM space representation of the evo-
lution of the distribution of HEs during loading �upper row� and
unloading �first two plots of the lower row�. White �black� colors
represent areas occupied by HEs in the elastic �rigid� state. Grey
and dotted areas are occupied by a mix of elastic and rigid HEs. �b�
Elements in the white and black areas never change their state,
those in the gray zone switch between the two states while those in
the dotted area jump from rigid to elastic only.
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physical meaning of a nonlinearity. Indeed, N3 relates to a
transition to a new equilibrium state, which is softer than the
initial one.

As a consequence of a stress protocol, the model predicts
a semipermanent change �conditioning� in the elastic modu-
lus of the sample in time �due to N3�. It corresponds to a slow
process: the further the elements are from the gray triangle,
the lower po is. This change becomes more and more evident
by increasing the amplitude of the excitation and/or its dura-
tion. When the sample is excited for a long time at a large
amplitude, the term N3 saturates; all HEs in the correspond-
ing rectangle become elastic and remain elastic also when
returning to a lower excitation amplitude �memory�, except
for relaxing back over a long time with a time constant re-
lated to pr �relaxation�.

III. EXPERIMENTAL VERIFICATION

Laboratory experiments were performed to verify and dis-
cuss the properties of hysteretic media which emerge from
the model discussed in the previous section. In particular,
experiments have been designed to investigate the effects of
the duration of the conditioning process, its consequences on
nonlinear measurements and the existence of several condi-
tioned states. We remark also that the results shown in Ref.
17 constitute as well a verification of our model. Indeed, the
conditioning mechanism, i.e., the change in N3 when the sys-
tem is excited at a large amplitude, directly implies that the
resonance frequency of the sample �at low amplitude� de-
creases after having perturbed the sample with a sinusoidal
wave at a larger amplitude, as the experimental data of Ten-
Cate et al.17 seem to indicate.

A. Experimental setup

We studied a linear �steel� and two nonlinear �concrete�
cylinder-shaped samples, measuring 16 cm in height and 6
cm in diameter, each of them equipped with two identical
piezoelectric transducers, with diameter of 4 cm. Transducers
were coupled to the tips of the specimen with a thin layer of
phenyl salicylate. The quality �and linearity� of the bonding
and acquisition system, as well as the repeatability of mea-
surements, were verified. The emitter was connected to a
function generator through a linear amplifier; the function
generator excited the transducer with a burst composed of 10
sine cycles at frequency �0=55.5 kHz. Received signals
were recorded with a sampling rate of 100 MSa/s with a time
window of 1.3 ms. All experiments were conducted in a
room at constant temperature and humidity.

We used the scaling subtraction method �SSM� �Refs. 32
and 33� to evaluate: �1� the global nonlinearity, defined as the
dependence of a specific nonlinear indicator on the excitation
amplitude. The SSM nonlinear indicator is defined as
follows: a “linear” signal vlin�t� is defined as the output
signal recorded using a low-amplitude excitation Ap; further
signals vi�t� are recorded at higher excitation amplitudes Ai.
For each measurement vi�t�, a reference signal vi

ref�t�
= �Ai /Ap�vlin�t� and a SSM signal wA�t�=vi�t�−vi

ref�t� are
defined.32 If the material behaves linearly and its properties

do not change in time, wA�t� is identically zero �except for
noise effects� since for a linear material, the superposition
principle can be applied. The SSM nonlinear indicator is then
introduced as the “energy” of wA�t� over a time interval T,

�A = 1/T�
0

T

wA
2�t�dt . �13�

�2� The conditioning effect, defined as the change in time of
the response at a fixed excitation amplitude. In SSM mea-
surements, the sample is excited with a repetition of bursts at
constant amplitude. A signal v0�t� is measured as the re-
sponse of the sample after the first burst excitation. Signals
vi�t� are recorded after each burst �i is the burst index�. Being
the excitation always the same, the signal wi�t�=vi�t�−v0�t�
should be identically zero �except for noise effects�, if the
material properties remain constant. Therefore, any change
in the conditioning indicator �i �defined as the energy of the
signal wi�t� as in Eq. �13�� represents a change in the Young
modulus and/or attenuation.

B. Global nonlinearity measurements

We studied the dependence of the measured nonlinearity
on the duration of the experiment �see Appendix for more
details about the implementation of the experiment�. A very
fast experiment was implemented as follows: the sample was
excited with one single sinusoidal burst at each of 14 in-
creasing amplitudes. Time lag between successive bursts was
10 s. The 14 output signals were recorded and processed, as
discussed in Sec. III A. Since the duration of the experiment
was very small, the system is expected not to have enough
time to rearrange to a new equilibrium state. Results are
reported in Fig. 3 �� vs the energy of the injected signal; red
circles�. The increase in the SSM indicator reveals the pres-
ence of nonlinearity.

FIG. 3. �Color online� SSM indicator �Eq. �13�� vs excitation
amplitude. Red circles: very fast experiment �one burst at each am-
plitude�; green diamonds: fast experiment �20 bursts at each ampli-
tude�; black squares: slow experiment �100 bursts at each ampli-
tude�; blue triangles: slow experiment after a strong conditioning
�sample conditioned at a large amplitude for 50 min before the
experiment�. Numerical simulations indicate a similar behavior as
shown in the inset. No effect is noticed for a linear reference sample
�steel�: brown stars.
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According to our model, nonequilibrium �conditioning�
effects begin to play a relevant role when changing the du-
ration of the experiment. On the same sample, after 1 week
relaxation, a second �fast� experiment was conducted: 20
bursts �with a period of 10 s� were injected for each of the 14
amplitudes and output signals for each amplitude were re-
corded as the response of the system after the last burst of the
series. The time lag between two successive amplitudes was
200 s. Results are reported as green diamonds in Fig. 3. Also,
a “slow” experiment was performed by extending the num-
ber of bursts per amplitude to 100 �i.e., 1000 s time lag
between successive amplitudes�. Results are reported as
black squares in Fig. 3. A longer excitation leads to a more
pronounced nonlinearity because a long dynamic excitation
leads to a transition to a new equilibrium state and this effect
can be attributed to the increase in N3 in Eq. �2�. None of
these effects can be observed in the linear sample �brown
stars�, thus confirming that they are not caused by the equip-
ment.

Each experiment was repeated five times �after complete
relaxation�. Results were averaged, defining error bars with
standard error theory and accounting for the precision of the
instrumentation. Due to the excellent repeatability, error bars
fall within symbol size.

Numerical simulations, based on the proposed model,
were performed in the same conditions discussed above. Re-
sults �inset of Fig. 3� show an excellent agreement with the
experimental observations, thus validating the proposed ap-
proach, even though a fit of the experimental data is not
feasible since the one-dimensional model is only a first ap-
proximation of the two-dimensional real geometry.

C. Conditioning effects

The slow experiment was repeated, with an identical pro-
tocol as before �100 bursts per amplitude�, immediately after
having fully conditioned the sample. Full conditioning was
obtained by exciting the specimen with a sequence of 300
bursts �total duration of about 50 min� at a constant ampli-
tude. According to the model, nonequilibrium effects should
here be negligible since conditioning was high/long enough
to set the sample into the largest amplitude equilibrium al-
ready. Indeed, results shown in Fig. 3 �blue triangles� indi-
cate that the same amount of nonlinearity is detected as in
the very fast experiment conducted on the sample in its re-
laxed state. As in the very fast experiment, nonlinearity of
the conditioned sample is due only to elements switching
continuously from the rigid to the elastic state �N2� since the
contribution of “conditioned” elements �N3� is the same for
each excitation amplitude. The corresponding numerical
simulations �blue symbols, inset of Fig. 3� agree with the
experimental observations.

One last experiment was performed on another identical
sample to show that the onset of a new equilibrium state is
not instantaneous. The experimental protocol was designed
as follows: �a� the sample was conditioned with a sequence
of bursts at a constant high amplitude for 1 min with burst
period of 4 s �i.e., 15 bursts� and output signals were re-
corded during the conditioning time; �b� the generator was

switched off for about 80 s during which five repeated ve-
locity measurements were performed using low-amplitude
short rectangular pulse excitations. The two steps were re-
peated sequentially until the SSM indicator became almost
constant, i.e., the specimen was in a new equilibrium state.
The excitation protocol for conditioning is reported as a dot-
ted line in Fig. 4. Results show a reduction in the elastic
modulus �i.e., a decrease in the wave speed; blue triangles�
and an increase in the � indicator �black squares�, which was
calculated using the response recorded after the very first
high-amplitude burst as reference signal. Since the excitation
is the same but the response of the system varies �� in-
creases�, the material properties �modulus and attenuation�
are changing. This is a purely nonequilibrium effect since
measurements are at constant amplitude. The indicator � in-
creases only while the excitation is on and after each resting
period it restarts its rise from approximately the last value
achieved. Velocities remain constant within each resting pe-
riod and scattering of data gives an indication of the error
bars. Simulation results are reported as red circles and are in
excellent agreement with the experimental data. The tem-
perature, measured on the surface of the sample using a ther-
mocouple, is plotted vs time in Fig. 4 �green diamonds�. It
remains constant �except for small fluctuations� during the
entire experiment, thus showing that our observations are not
caused by heating of the sample.

IV. CONCLUSIONS

We have shown evidences of a strong interplay between
nonlinearity and nonequilibrium in the elastic response of
hysteretic media. Nonlinear measurements on fully condi-
tioned samples seem not to be affected by nonequilibrium
effects. Therefore conditioning the sample before performing
nonlinear measurements could be a method to separate ef-
fects due to nonlinearity from those due to nonequilibrium. It

FIG. 4. �Color online� SSM indicator � vs time during a condi-
tioning experiment: the sample is excited with a series of bursts
with constant high amplitude. The excitation protocol is alternately
on and off in successive time intervals, as indicated by the dotted
line. Numerical results �red circles� are in good agreement with
experimental data �black squares�. The trend of � follows the evo-
lution of the Young modulus in accordance with wave speed mea-
surements �blue triangles�. The temperature is constant apart from
small fluctuations during the whole experiment �green diamonds�.
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is important to note that the conditioning process induces
reversible changes in the linear �and perhaps nonlinear� prop-
erties of the medium, which must still be globally under-
stood. The effects shown cannot be captured without intro-
ducing in the model stochastic and/or time-dependent
features.

Besides the importance of the proposed model to help
understanding and interpreting the experimental data, we be-
lieve that several expectations in different fields are to be
reconsidered in view of our results. Indeed, even though only
concrete samples were tested here, similar observations are
expected also for other nonlinear elastic materials �such as
rocks� and perhaps for other hysteretic systems as well. As
an example, softening induced by seismic/acoustic/ultrasonic
excitations in materials, even close to collapse, can be a con-
sequence of the material memory and not of damage progres-
sion as usually agreed. Thus softening induced by
earthquakes34 does not necessarily correspond to an increase
in the soil nonlinearity. Also, the nonlinear response is de-
pendent on the rate of the excitation protocol and on the
preconditioning of the sample. Thus care has to be taken
when comparing the nonlinearity of different samples in
view of quantifying their relative amount of damage.3,35,36

APPENDIX

As mentioned in the text of the paper, one of the main
goals of our study was to investigate the effects of the dura-
tion of conditioning on nonlinear ultrasonic measurements.
In particular, as the proposed model predicts, several condi-
tioned states are expected to take place, depending on the
duration of the conditioning excitation. It follows that the
duration of the conditioning process had to be carefully con-
trolled during experiments, which could not be guaranteed
by using continuous waves, such as in resonance experi-
ments.

Therefore, in our study, the sample was excited by means
of short bursts, each composed of a sequence of ten sinu-
soidal cycles centered at frequency 55.5 kHz. By using
bursts, both the duration of the excitation �i.e., the number of
injected bursts at each fixed amplitude� and the period be-
tween each successive burst �time between bursts� were eas-
ily controlled. The burst period was chosen large enough to
avoid overlapping between successive bursts �T=10 s�. In

the paper, we refer to different experiments according to the
extent in time of the conditioning wave, i.e., to the number of
bursts injected per each amplitude. In particular, by simply
varying the number of injected bursts, experiments have
been classified as very fast, fast, and slow.

A schematic representation of a very fast experiment is
shown in Fig. 5. For each defined amplitude �the total num-
ber of amplitudes was 5 in this example, each one marked
with capital letters in Fig. 6�, only one burst was injected: the
duration of the conditioning excitation is thus very small.
Between two successive bursts, the time lag was long
enough to let the operator perform measurements and switch
the function generator to the following amplitude.

The experiment was set as follows: �1� the generator is
switched on at the lower excitation amplitude �A�. Measure-
ments are performed after burst A and the red dot in Fig. 1
denotes the measurement time. The temporal signal recorded
is stored to be processed using the SSM and a point in the �
indicator vs input energy plot is drawn; �2� the excitation
amplitude is increased �B� and the output signal is recorded,
again, after the burst B. The corresponding point on the � vs
input plot is drawn. The procedure is repeated for each am-
plitude.

To increase the duration of conditioning and thus decrease
the rate in order to perform the fast and slow experiments,
the testing procedure was modified by sending a sequence of
n bursts �as an example, n=5 in the schematic representation
reported in Fig. 6�, separated one another by a period T.
Again, for each amplitude, output signals were measured af-
ter the last burst of the sequence, as schematically shown in
Fig. 6 �red circle�. After each measurement, the recorded
signal was processed and a point in the � indicator vs input
energy plot was drawn.

By augmenting the number of periods composing the se-
quence of n bursts, any arbitrary duration of excitation can
be programmed at the function generator. In the experiments
discussed in Sec. III B, duration corresponding to 1 �very
fast experiment�, 20 �fast experiment�, and 100 �slow experi-
ment� bursts has been chosen.

FIG. 5. �Color online� Schematic representation of the experi-
mental acquisition in the case of a very fast experiment. �a� Se-
quence in time of the excitation. A given time lag passed before
successive measurements, shown as red circles in the plot. �b� Each
measurement provides a point in the plot � vs input energy. FIG. 6. �Color online� Schematic representation of the experi-

mental acquisition varying the excitation duration �plot not in
scale�. Here, for each amplitude, the duration of the conditioning
process corresponds to five bursts, each separated by a short time.
Acquisition times are represented as red circles.
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